A watershed moment on Nov. 22, 2022, was mostly virtual, yet it shook the foundations of nearly every industry on the planet.On that day, OpenAI released ChatGPT, the most advanced artificial intelligence chatbot ever developed. This set off demand for generative AI applications that help businesses become more efficient, from providing consumers with answers to their questions to accelerating the work of researchers as they seek scientific breakthroughs, and much, much more.
Businesses that previously dabbled in AI are now rushing to adopt and deploy the latest applications. Generative AI - the ability of algorithms to create new text, images, sounds, animations, 3D models and even computer code - is moving at warp speed, transforming the way people work and play.
By employing large language models (LLMs) to handle queries, the technology can dramatically reduce the time people devote to manual tasks like searching for and compiling information.
The stakes are high. AI could contribute more than $15 trillion to the global economy by 2030, according to PwC. And the impact of AI adoption could be greater than the inventions of the internet, mobile broadband and the smartphone - combined.
The engine driving generative AI is accelerated computing. It uses GPUs, DPUs and networking along with CPUs to accelerate applications across science, analytics, engineering, as well as consumer and enterprise use cases.
Early adopters across industries - from drug discovery, financial services, retail and telecommunications to energy, higher education and the public sector - are combining accelerated computing with generative AI to transform business operations, service offerings and productivity.
Click to view the infographic: Generating the Next Wave of AI Transformation Generative AI for Drug Discovery Today, radiologists use AI to detect abnormalities in medical images, doctors use it to scan electronic health records to uncover patient insights, and researchers use it to accelerate the discovery of novel drugs.
Traditional drug discovery is a resource-intensive process that can require the synthesis of over 5,000 chemical compounds and yields an average success rate of just 10%. And it takes more than a decade for most new drug candidates to reach the market.
Researchers are now using generative AI models to read a protein's amino acid sequence and accurately predict the structure of target proteins in seconds, rather than weeks or months.
Using NVIDIA BioNeMo models, Amgen, a global leader in biotechnology, has slashed the time it takes to customize models for molecule screening and optimization from three months to just a few weeks. This type of trainable foundation model enables scientists to create variants for research into specific diseases, allowing them to develop target treatments for rare conditions.
Whether predicting protein structures or securely training algorithms on large real-world and synthetic datasets, generative AI and accelerated computing are opening new areas of research that can help mitigate the spread of disease, enable personalized medical treatments and boost patient survival rates.
Generative AI for Financial Services According to a recent NVIDIA survey, the top AI use cases in the financial services industry are customer services and deep analytics, where natural language processing and LLMs are used to better respond to customer inquiries and uncover investment insights. Another common application is in recommender systems that power personalized banking experiences, marketing optimization and investment guidance.
Advanced AI applications have the potential to help the industry better prevent fraud and transform every aspect of banking, from portfolio planning and risk management to compliance and automation.
Eighty percent of business-relevant information is in an unstructured format - primarily text - which makes it a prime candidate for generative AI. Bloomberg News produces 5,000 stories a day related to the financial and investment community. These stories represent a vast trove of unstructured market data that can be used to make timely investment decisions.
NVIDIA, Deutsche Bank, Bloomberg and others are creating LLMs trained on domain-specific and proprietary data to power finance applications.
Financial Transformers, or FinFormers, can learn context and understand the meaning of unstructured financial data. They can power Q&A chatbots, summarize and translate financial texts, provide early warning signs of counterparty risk, quickly retrieve data and identify data-quality issues.
These generative AI tools rely on frameworks that can integrate proprietary data into model training and fine-tuning, integrate data curation to prevent bias and use guardrails to keep conversations finance-specific.
Expect fintech startups and large international banks to expand their use of LLMs and generative AI to develop sophisticated virtual assistants to serve internal and external stakeholders, create hyper-personalized customer content, automate document summarization to reduce manual work, and analyze terabytes of public and private data to generate investment insights.
Generative AI for Retail With 60% of all shopping journeys starting online and consumers more connected and knowledgeable than ever, AI has become a vital tool to help retailers match shifting expectations and differentiate from a rising tide of competition.
Retailers are using AI to improve customer experiences, power dynamic pricing, create customer segmentation, design personalized recommendations and perform visual search.
Generative AI can support customers and employees at every step through the buyer journey.
With AI models trained on specific brand and product data, they can generate robust product descriptions that improve search engine optimization rankings and help shop










