
Just as there are widely understood empirical laws of nature - for example, what goes up must come down, or every action has an equal and opposite reaction - the field of AI was long defined by a single idea: that more compute, more training data and more parameters makes a better AI model.
However, AI has since grown to need three distinct laws that describe how applying compute resources in different ways impacts model performance. Together, these AI scaling laws - pretraining scaling, post-training scaling and test-time scaling, also called long thinking - reflect how the field has evolved with techniques to use additional compute in a wide variety of increasingly complex AI use cases.
The recent rise of test-time scaling - applying more compute at inference time to improve accuracy - has enabled AI reasoning models, a new class of large language models (LLMs) that perform multiple inference passes to work through complex problems, while describing the steps required to solve a task. Test-time scaling requires intensive amounts of computational resources to support AI reasoning, which will drive further demand for accelerated computing.
What Is Pretraining Scaling? Pretraining scaling is the original law of AI development. It demonstrated that by increasing training dataset size, model parameter count and computational resources, developers could expect predictable improvements in model intelligence and accuracy.
Each of these three elements - data, model size, compute - is interrelated. Per the pretraining scaling law, outlined in this research paper, when larger models are fed with more data, the overall performance of the models improves. To make this feasible, developers must scale up their compute - creating the need for powerful accelerated computing resources to run those larger training workloads.
This principle of pretraining scaling led to large models that achieved groundbreaking capabilities. It also spurred major innovations in model architecture, including the rise of billion- and trillion-parameter transformer models, mixture of experts models and new distributed training techniques - all demanding significant compute.
And the relevance of the pretraining scaling law continues - as humans continue to produce growing amounts of multimodal data, this trove of text, images, audio, video and sensor information will be used to train powerful future AI models.
Pretraining scaling is the foundational principle of AI development, linking the size of models, datasets and compute to AI gains. Mixture of experts, depicted above, is a popular model architecture for AI training. What Is Post-Training Scaling? Pretraining a large foundation model isn't for everyone - it takes significant investment, skilled experts and datasets. But once an organization pretrains and releases a model, they lower the barrier to AI adoption by enabling others to use their pretrained model as a foundation to adapt for their own applications.
This post-training process drives additional cumulative demand for accelerated computing across enterprises and the broader developer community. Popular open-source models can have hundreds or thousands of derivative models, trained across numerous domains.
Developing this ecosystem of derivative models for a variety of use cases could take around 30x more compute than pretraining the original foundation model.
Developing this ecosystem of derivative models for a variety of use cases could take around 30x more compute than pretraining the original foundation model.
Post-training techniques can further improve a model's specificity and relevance for an organization's desired use case. While pretraining is like sending an AI model to school to learn foundational skills, post-training enhances the model with skills applicable to its intended job. An LLM, for example, could be post-trained to tackle a task like sentiment analysis or translation - or understand the jargon of a specific domain, like healthcare or law.
The post-training scaling law posits that a pretrained model's performance can further improve - in computational efficiency, accuracy or domain specificity - using techniques including fine-tuning, pruning, quantization, distillation, reinforcement learning and synthetic data augmentation.
Fine-tuning uses additional training data to tailor an AI model for specific domains and applications. This can be done using an organization's internal datasets, or with pairs of sample model input and outputs.
Distillation requires a pair of AI models: a large, complex teacher model and a lightweight student model. In the most common distillation technique, called offline distillation, the student model learns to mimic the outputs of a pretrained teacher model.
Reinforcement learning, or RL, is a machine learning technique that uses a reward model to train an agent to make decisions that align with a specific use case. The agent aims to make decisions that maximize cumulative rewards over time as it interacts with an environment - for example, a chatbot LLM that is positively reinforced by thumbs up reactions from users. This technique is known as reinforcement learning from human feedback (RLHF). Another, newer technique, reinforcement learning from AI feedback (RLAIF), instead uses feedback from AI models to guide the learning process, streamlining post-training efforts.
Best-of-n sampling generates multiple outputs from a language model and selects the one with the highest reward score based on a reward model. It's often used to improve an AI's outputs without modifying model parameters, offering an alternative to fine-tuning with reinforcement learning.
Search methods explore a range of potential decision paths before selecting a final output. This post-training technique can iteratively improve the model's responses
More from Nvidia
10/11/2025
Editor's note: This post is part of Think SMART, a series focused on how lea...
06/11/2025
NVIDIA founder and CEO Jensen Huang and chief scientist Bill Dally were honored ...
06/11/2025
Editor's note: This blog has been updated to reflect the correct launch date for Call of Duty: Black Ops 7', November 14.
A crisp chill's in the...
04/11/2025
In Berlin on Tuesday, Deutsche Telekom and NVIDIA unveiled the world's first...
04/11/2025
When inspiration strikes, nothing kills momentum faster than a slow tool or a frozen timeline. Creative apps should feel fast and fluid - an extension of imagin...
03/11/2025
Two out of every three people are likely to be living in cities or other urban c...
31/10/2025
Amidst Gyeongju, South Korea's ancient temples and modern skylines, Jensen H...
30/10/2025
An unassuming van driving around rural India uses powerful AI technology that...
30/10/2025
Get ready, raiders - the wait is over. ARC Raiders is dropping onto GeForce NOW and bringing the fight from orbit to the screen.
To celebrate the launch, gamer...
29/10/2025
Editor's note: This post is part of Into the Omniverse, a series focused on ...
28/10/2025
Governments everywhere are racing to harness the power of AI - but legacy infras...
28/10/2025
AI is moving from the digital world into the physical one. Across factory floors...
28/10/2025
NVIDIA is delivering the telecom industry a major boost in open-source software for building AI-native 5G and 6G networks.
NVIDIA Aerial software will soon be ...
28/10/2025
The race to bottle a star now runs on AI.
NVIDIA, General Atomics and a team of international partners have built a high-fidelity, AI-enabled digital twin for ...
28/10/2025
Along the Pacific Ocean in Monterey, California, the Naval Postgraduate School (...
28/10/2025
To democratize access to AI technology nationwide, AI education and deployment c...
28/10/2025
Leading technology companies in aerospace and automotive are accelerating their ...
26/10/2025
This year's ROSCon conference heads to Singapore, bringing together the global robotics developer community behind Robot Operating System (ROS) - the world&...
24/10/2025
Monday, Oct. 27, 12:30 p.m.
How Medium-Sized Cities Are Tackling AI Readiness
L to R: Mark Muro, senior fellow at Brookings Metro; Micah Runner, city manag...
23/10/2025
The nights grow longer and the shadows get bolder with Vampire The Masquerade: B...
21/10/2025
Coastal communities in the U.S. have a 26% chance of flooding within a 30-year period. This percentage is expected to increase due to climate-change-driven sea-...
20/10/2025
NVIDIA and Google Cloud are expanding access to accelerated computing to transform the full spectrum of enterprise workloads, from visual computing to agentic a...
17/10/2025
As Open Source AI Week comes to a close, we're celebrating the innovation, c...
17/10/2025
AI has ignited a new industrial revolution.
NVIDIA and TSMC are working togethe...
16/10/2025
GeForce NOW is more than just a platform to stream fresh games every week - it offers celebrations for the gamers who make it epic, with member rewards to sweet...
14/10/2025
AI is transforming the way enterprises build, deploy and scale intelligent applications. As demand surges for enterprise-grade AI applications that offer speed,...
14/10/2025
At Oracle AI World, NVIDIA and Oracle announced they are deepening their collabo...
13/10/2025
The future of AI took flight at Starbase, Texas - where NVIDIA CEO Jensen Huang ...
13/10/2025
At the OCP Global Summit, NVIDIA is offering a glimpse into the future of gigawa...
09/10/2025
NVIDIA Blackwell swept the new SemiAnalysis InferenceMAX v1 benchmarks, deliveri...
09/10/2025
Microsoft Azure today announced the new NDv6 GB300 VM series, delivering the ind...
09/10/2025
Lock, load and stream - the battle is just beginning. EA's highly anticipated Battlefield 6 is set to storm the cloud when it launches tomorrow with GeForce...
08/10/2025
Telecommunication networks are critical infrastructure for every nation, underpi...
02/10/2025
Editor's note: This blog has been updated to include an additional game for October, The Outer Worlds 2.
October is creeping in with plenty of gaming treat...
01/10/2025
Many users want to run large language models (LLMs) locally for more privacy and control, and without subscriptions, but until recently, this meant a trade-off ...
30/09/2025
Quantum computing promises to reshape industries - but progress hinges on solvin...
30/09/2025
Editor's note: This blog is a part of Into the Omniverse, a series focused o...
25/09/2025
Suit up and head for the cloud. Mecha BREAK, the popular third-person shooter, is now available to stream on GeForce NOW with NVIDIA DLSS 4 technology.
Catch i...
24/09/2025
Canada's role as a leader in artificial intelligence was on full display at ...
24/09/2025
Open technologies - made available to developers and businesses to adopt, modify...
23/09/2025
Energy efficiency in large language model inference has improved 100,000x in the...
22/09/2025
OpenAI and NVIDIA just announced a landmark AI infrastructure partnership - an initiative that will scale OpenAI's compute with multi-gigawatt data centers ...
19/09/2025
AI is no longer solely a back-office tool. It's a strategic partner that can...
18/09/2025
The U.K. was the center of the AI world this week as NVIDIA, U.K. and U.S. leade...
18/09/2025
GeForce NOW is packing a monstrous punch this week. Dying Light: The Beast, the latest adrenaline fueled chapter in Techland's parkour meets survival horror...
17/09/2025
Today's creators are equal parts entertainer, producer and gamer, juggling game commentary, scene changes, replay clips, chat moderation and technical troub...
16/09/2025
The U.K. is driving investments in sovereign AI, using the technology to advance...
13/09/2025
Celtic languages - including Cornish, Irish, Scottish Gaelic and Welsh - are the U.K.'s oldest living languages. To empower their speakers, the UK-LLM sover...
10/09/2025
GeForce NOW Blackwell RTX 5080-class SuperPODs are now rolling out, unlocking a new level of ultra high-performance, cinematic cloud gaming.
GeForce NOW Ultima...
09/09/2025
Inference has emerged as the new frontier of complexity in AI. Modern models are...