
Editor's note: This post is part of the AI Decoded series, which demystifies AI by making the technology more accessible, and showcases new hardware, software, tools and accelerations for GeForce RTX PC and NVIDIA RTX workstation users.
Large language models (LLMs) are reshaping productivity. They're capable of drafting documents, summarizing web pages and, having been trained on vast quantities of data, accurately answering questions about nearly any topic.
LLMs are at the core of many emerging use cases in generative AI, including digital assistants, conversational avatars and customer service agents.
Many of the latest LLMs can run locally on PCs or workstations. This is useful for a variety of reasons: users can keep conversations and content private on-device, use AI without the internet, or simply take advantage of the powerful NVIDIA GeForce RTX GPUs in their system. Other models, because of their size and complexity, do no't fit into the local GPU's video memory (VRAM) and require hardware in large data centers.
However, Iit i's possible to accelerate part of a prompt on a data-center-class model locally on RTX-powered PCs using a technique called GPU offloading. This allows users to benefit from GPU acceleration without being as limited by GPU memory constraints.
Size and Quality vs. Performance There's a tradeoff between the model size and the quality of responses and the performance. In general, larger models deliver higher-quality responses, but run more slowly. With smaller models, performance goes up while quality goes down.
This tradeoff isn't always straightforward. There are cases where performance might be more important than quality. Some users may prioritize accuracy for use cases like content generation, since it can run in the background. A conversational assistant, meanwhile, needs to be fast while also providing accurate responses.
The most accurate LLMs, designed to run in the data center, are tens of gigabytes in size, and may not fit in a GPU's memory. This would traditionally prevent the application from taking advantage of GPU acceleration.
However, GPU offloading uses part of the LLM on the GPU and part on the CPU. This allows users to take maximum advantage of GPU acceleration regardless of model size.
Optimize AI Acceleration With GPU Offloading and LM Studio LM Studio is an application that lets users download and host LLMs on their desktop or laptop computer, with an easy-to-use interface that allows for extensive customization in how those models operate. LM Studio is built on top of llama.cpp, so it's fully optimized for use with GeForce RTX and NVIDIA RTX GPUs.
LM Studio and GPU offloading takes advantage of GPU acceleration to boost the performance of a locally hosted LLM, even if the model can't be fully loaded into VRAM.
With GPU offloading, LM Studio divides the model into smaller chunks, or subgraphs, which represent layers of the model architecture. Subgraphs aren't permanently fixed on the GPU, but loaded and unloaded as needed. With LM Studio's GPU offloading slider, users can decide how many of these layers are processed by the GPU.
LM Studio's interface makes it easy to decide how much of an LLM should be loaded to the GPU. For example, imagine using this GPU offloading technique with a large model like Gemma 2 27B. 27B refers to the number of parameters in the model, informing an estimate as to how much memory is required to run the model.
According to 4-bit quantization, a technique for reducing the size of an LLM without significantly reducing accuracy, each parameter takes up a half byte of memory. This means that the model should require about 13.5 billion bytes, or 13.5GB - plus some overhead, which generally ranges from 1-5GB.
Accelerating this model entirely on the GPU requires 19GB of VRAM, available on the GeForce RTX 4090 desktop GPU. With GPU offloading, the model can run on a system with a lower-end GPU and still benefit from acceleration.
The table above shows how to run several popular models of increasing size across a range of GeForce RTX and NVIDIA RTX GPUs. The maximum level of GPU offload is indicated for each combination. Note that even with GPU offloading, users still need enough system RAM to fit the whole model. In LM Studio, it's possible to assess the performance impact of different levels of GPU offloading, compared with CPU only. The below table shows the results of running the same query across different offloading levels on a GeForce RTX 4090 desktop GPU.
Depending on the percent of the model offloaded to GPU, users see increasing throughput performance compared with running on CPUs alone. For the Gemma 2 27B model, performance goes from an anemic 2.1 tokens per second to increasingly usable speeds the more the GPU is used. This enables users to benefit from the performance of larger models that they otherwise would've been unable to run. On this particular model, even users with an 8GB GPU can enjoy a meaningful speedup versus running only on CPUs. Of course, an 8GB GPU can always run a smaller model that fits entirely in GPU memory and get full GPU acceleration.
Achieving Optimal Balance LM Studio's GPU offloading feature is a powerful tool for unlocking the full potential of LLMs designed for the data center, like Gemma 2 27B, locally on RTX AI PCs. It makes larger, more complex models accessible across the entire lineup of PCs powered by GeForce RTX and NVIDIA RTX GPUs.
Download LM Studio to try GPU offloading on larger models, or experiment with a variety of RTX-accelerated LLMs running locally on RTX AI PCs and workstations.
Generative AI is transforming gaming, videoconferencing and interactive experiences of all kinds. Make sense of what's new and what's next by subscribing to the AI Decoded newsletter.
More from Nvidia
26/10/2025
This year's ROSCon conference heads to Singapore, bringing together the global robotics developer community behind Robot Operating System (ROS) - the world&...
24/10/2025
Monday, Oct. 27, 12:30 p.m.
How Medium-Sized Cities Are Tackling AI Readiness
L to R: Mark Muro, senior fellow at Brookings Metro; Micah Runner, city manag...
23/10/2025
The nights grow longer and the shadows get bolder with Vampire The Masquerade: B...
21/10/2025
Coastal communities in the U.S. have a 26% chance of flooding within a 30-year period. This percentage is expected to increase due to climate-change-driven sea-...
20/10/2025
NVIDIA and Google Cloud are expanding access to accelerated computing to transform the full spectrum of enterprise workloads, from visual computing to agentic a...
17/10/2025
As Open Source AI Week comes to a close, we're celebrating the innovation, c...
17/10/2025
AI has ignited a new industrial revolution.
NVIDIA and TSMC are working togethe...
16/10/2025
GeForce NOW is more than just a platform to stream fresh games every week - it offers celebrations for the gamers who make it epic, with member rewards to sweet...
14/10/2025
AI is transforming the way enterprises build, deploy and scale intelligent applications. As demand surges for enterprise-grade AI applications that offer speed,...
14/10/2025
At Oracle AI World, NVIDIA and Oracle announced they are deepening their collabo...
13/10/2025
The future of AI took flight at Starbase, Texas - where NVIDIA CEO Jensen Huang ...
13/10/2025
At the OCP Global Summit, NVIDIA is offering a glimpse into the future of gigawa...
09/10/2025
NVIDIA Blackwell swept the new SemiAnalysis InferenceMAX v1 benchmarks, deliveri...
09/10/2025
Microsoft Azure today announced the new NDv6 GB300 VM series, delivering the ind...
09/10/2025
Lock, load and stream - the battle is just beginning. EA's highly anticipated Battlefield 6 is set to storm the cloud when it launches tomorrow with GeForce...
08/10/2025
Telecommunication networks are critical infrastructure for every nation, underpi...
02/10/2025
Editor's note: This blog has been updated to include an additional game for October, The Outer Worlds 2.
October is creeping in with plenty of gaming treat...
01/10/2025
Many users want to run large language models (LLMs) locally for more privacy and control, and without subscriptions, but until recently, this meant a trade-off ...
30/09/2025
Quantum computing promises to reshape industries - but progress hinges on solvin...
30/09/2025
Editor's note: This blog is a part of Into the Omniverse, a series focused o...
25/09/2025
Suit up and head for the cloud. Mecha BREAK, the popular third-person shooter, is now available to stream on GeForce NOW with NVIDIA DLSS 4 technology.
Catch i...
24/09/2025
Canada's role as a leader in artificial intelligence was on full display at ...
24/09/2025
Open technologies - made available to developers and businesses to adopt, modify...
23/09/2025
Energy efficiency in large language model inference has improved 100,000x in the...
22/09/2025
OpenAI and NVIDIA just announced a landmark AI infrastructure partnership - an initiative that will scale OpenAI's compute with multi-gigawatt data centers ...
19/09/2025
AI is no longer solely a back-office tool. It's a strategic partner that can...
18/09/2025
The U.K. was the center of the AI world this week as NVIDIA, U.K. and U.S. leade...
18/09/2025
GeForce NOW is packing a monstrous punch this week. Dying Light: The Beast, the latest adrenaline fueled chapter in Techland's parkour meets survival horror...
17/09/2025
Today's creators are equal parts entertainer, producer and gamer, juggling game commentary, scene changes, replay clips, chat moderation and technical troub...
16/09/2025
The U.K. is driving investments in sovereign AI, using the technology to advance...
13/09/2025
Celtic languages - including Cornish, Irish, Scottish Gaelic and Welsh - are the U.K.'s oldest living languages. To empower their speakers, the UK-LLM sover...
10/09/2025
GeForce NOW Blackwell RTX 5080-class SuperPODs are now rolling out, unlocking a new level of ultra high-performance, cinematic cloud gaming.
GeForce NOW Ultima...
09/09/2025
Inference has emerged as the new frontier of complexity in AI. Modern models are...
09/09/2025
As large language models (LLMs) grow larger, they get smarter, with open models from leading developers now featuring hundreds of billions of parameters. At the...
09/09/2025
At this week's AI Infrastructure Summit in Silicon Valley, NVIDIA's VP o...
09/09/2025
Inference performance is critical, as it directly influences the economics of an AI factory. The higher the throughput of AI factory infrastructure, the more to...
09/09/2025
At this week's IAA Mobility conference in Munich, NVIDIA Vice President of A...
09/09/2025
ComfyUI - an open-source, node-based graphical interface for running and buildin...
04/09/2025
NVIDIA today announced new AI education support for K-12 programs at a White House event to celebrate public-private partnerships that advance artificial intell...
04/09/2025
Editor's note: This post is part of the AI On blog series, which explores the latest techniques and real-world applications of agentic AI, chatbots and copi...
04/09/2025
NVIDIA Blackwell RTX is coming to the cloud on Wednesday, Sept. 10 - an upgrade ...
03/09/2025
3D artists are constantly prototyping.
In traditional workflows, modelers must build placeholder, low-fidelity assets to populate 3D scenes, tinkering and adju...
02/09/2025
For more than a century, meteorologists have chased storms with chalkboards, equ...
28/08/2025
Brace yourself, COGs - the Locusts aren't the only thing rising up. The Coal...
28/08/2025
Last week at Gamescom, NVIDIA announced the winners of the NVIDIA and ModDB RTX ...
27/08/2025
AI models are advancing at a rapid rate and scale.
But what might they lack that (most) humans don't? Common sense: an understanding, developed through rea...
25/08/2025
Robots around the world are about to get a lot smarter as physical AI developers...
25/08/2025
As autonomous vehicle systems rapidly grow in complexity, equipped with reasonin...
22/08/2025
As the latest member of the NVIDIA Blackwell architecture family, the NVIDIA Blackwell Ultra GPU builds on core innovations to accelerate training and AI reason...
22/08/2025
AI reasoning, inference and networking will be top of mind for attendees of next...